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Abstract-This study considers the multiple scattering of antiplane shear waves in a metal matrix
composite reinforced by fibers with interfacial layers. We assume same-size cylindrical inclusion
and same-thickness interface layers with nonhomogeneous elastic properties. First, the problem of
the scattering of plane axial shear waves by a large number N of fibers, arbitrarily distributed in an
infinite matrix, is considered. The resulting equations are then averaged, considering the positions
of the fibers to be random. The averaged equations are solved by using Lax's quasicrystalline
approximation. Numerical calculations for an SiC-fiber-reinforced AI composite are carried out
and the effect of interface properties on the phase velocity and attenuation of coherent plane wave,
and the effective shear modulus is shown graphically. © 1997 Elsevier Science Ltd

I. INTRODUCTION

Much current practical interest exists concerning wave propagation through a composite
medium with a random distribution of inclusions with interface layers (Shindo et al., 1995).
The theoretical investigation of the dynamic properties of such composites is a prerequisite
to the design of a composite with high strength and high damping. Recently, Shindo and
Niwa (1996) analyzed the scattering of antiplane shear waves by a cylindrical inclusion
with thick nonhomogeneous interface layer, and applied the results of the single scattering
problem to coherent plane wave in a fiber-reinforced metal matrix composite with interface
layers. While the scattering of plane elastic waves by a single inclusion has been the subject
of much research in the past, the wave propagation problem for composite materials
including the effect of multiple scattering by several inclusions has been rather sparsely
discussed.

The purpose of this study is to analyze the effects of interface layers and multiple
scattering by a distribution of inclusions on the wave propagation of time-harmonic axial
shear waves in a fiber-reinforced metal matrix composite. The interface layer is modeled by
any number of homogeneous layers, which may be chosen to approximate any non­
homogeneous material properties. The composite medium contains a random distribution
of cylindrical inclusions of same size with interface layers of same thickness. The problem
of the scattering of plane axial shear waves by a large number N of cylindrical inclusions
with interfaces, arbitrarily distributed in an infinite matrix, is analyzed and the resulting
equations are then averaged, considering the positions of the inclusions to be random (Bose
and Mal, 1973, 1974). The averaged equations are solved by using Lax's quasicrystalline
approximation to yield the propagation characteristics of the average wave (Lax, 1952).
The particular case when the pair correlation function has an exponential form, is examined
in detail. The phase velocity and attenuation ofcoherent elastic shear wave, and the effective
shear modulus are obtained numerically for an SiC fiber-reinforced Al composite and
the numerical values are shown in graphs for various interface properties at designated
frequencies. The results in the dependence on concentration at wavelength comparable to
scatter size here are valid for thick nonhomogeneous interface layers and a wide range of
frequencies.
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Fig. 1. A cylindrical inclusion with an interface layer and coordinate systems.

2. STATEMENT OF THE PROBLEM AND SCATTERING OF ANTIPLANE SHEAR WAVES
BY N INCLUSIONS

We suppose the identical cylindrical inclusions of radius aoto be located within a large
region S in an infinite matrix. Let fl, P, v be the shear modulus, the mass density, the
Poisson's ratio of the matrix, and flo, Po, Vo those of the inclusions. We assume that thick
layers of uniform thickness h with variable material properties are presented at the interfaces
separating the matrix from each cylinder. Let the inclusion be separated from the matrix
by n layers. The geometry is depicted in Fig. I where (x, y, z) is the Cartesian coordinate
system with origin at 0 and (r, (J, z) is the corresponding cylindrical coordinate system. The
layer is subdivided into several thick-walled shells and the material properties within each
shell of inner radius a/~ I, outer radius aJCI = 1 - n) and uniform thickness hi = al-a/~ I are
flh Ph V" Labelling the inclusions by suffixes i = 1,2, ... , N and taking suitable coordinate
axes in a transverse plane, let the boundaries of the ith cylindrical inclusion and the shells
be denoted by C~ (l = 0 - n) and the Cartesian and cylindrical coordinates of those center
0i (rim (JiO, z) be (Xi> Yio z) and (ri, (Ji> z), respectively.

The displacement in the z-direction w satisfies the wave equation

(1)
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where '\72 = iJ2/or+(l/r)(%r)+(l/r)W/o(P) is the two-dimensional Laplacian operator,
t is the time and Csh is the shear wave speed in the matrix,

(2)

The stress component !rz is found as

(3)

We consider a plane shear (longitudinal shear, SH) wave polarized in the z-direction
and propagating in the positive x-direction. Thus,

(4)

where a superscript i stands for the incident component, w is the circular frequency of the
wave and Wo is the amplitude of the incident SH wave. ksh is the wave number of the SH
wave in the matrix,

(5)

In what follows, the time factor exp( - iwt) will be omitted from all the field quantities.
The displacement fields in the matrix, the lth layer of the ith cylindrical inclusion and

the ith cylindrical inclusion may be expressed in the forms

00

w; = L AimHm(kshr;) exp(imO;)
m= -00

(6)

00

w~ = L [B~mHm(k~hr;) exp(imO j ) + C~mJm(k~hrj) exp(imO j )] (l = 1 '" n) (7)
m= -00

00

w: = L DimJm(k~hri) exp(imO;),
m= -00

(8)

where superscripts s, t and I (l = 1 '" n) denote the scattered component within a matrix,
the transmitted component within a cylindrical inclusion and the field quantity within an
lth layer. Aim, B~m, C~m and D;m are the unknowns to be solved, Hm() is the mth order Hankel
function of the first kind and Jm () is the mth order Bessel function of the first kind (Watson,
1966). The wave numbers k;;h (l = 1 '" n) in the lth layer and k~h in the cylindrical inclusion
are given by

o W
k sh = 0'

Csh

(9)
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where the longitudinal shear wave speeds C;h in the lth layer and C~h in the cylindrical
inclusion are

I _ (!!i)1/2
Csh -

PI
(l = 1 ~ n)

(10)

The boundary conditions on C~ (l = 0 ~ n) are

(11)

(12)

(13)

where r~zJr~Zj, r~" r~z) is the stress component corresponding to w~(w}wS
, Wi). The condition

of continuity of displacement at Pi (am 8j , z) on C; gives

co
L [BimHrn(k';han) exp(im8) + C'JrnJrn(k';han) exp(im8)]

m= -00

= [wo exp(ikshx) + it, rn~~ co A irn Hrn (kshrJ exp(im8J1; (14)
J

Multiplying by exp [- iv8J and integrating from 0 to 2n, we have

N co
B'JvHv(k';han) + C'JJv(k';han) = wor'Jv(kshan) exp(ikshrjo cos 8jo )+ L L AirnKijrnv> (15)

i=] m=-oc;

where

(i #- j)

(16)

(jrnv is the Kronecker delta. Using the addition theorem of Hankel functions (Bose and Mal,
1973), we get

Kijrnv = 2~ fn {exP(im8ji )( _1)m s~~co(-l)sJs(kshan)

x Hs-rn(kshrji) exp [is(8j - 8ji)] } exp( - iv8j) d8j

= Jv(kshan)Hm_v(kshrjJ exp [i(m-v)(Jj,J (i #- j), (17)

where (rji, 8ji) are the polar coordinates of OJ referred to 0, as origin. Thus, eqn (15) becomes
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BivHv(k;han) +CiJv(k;han) = AjvHv(kshan)

+JV(kShan{ woi" exp(ikshrjo cos 8jo )+itl' m=~oo Ai,m+ vHm (kshrji) exp(im8ji)J (18)

where :1;' denotes the sum over all cylindrical inclusions except the jth. The conditions of
continuity of displacement at Pj (ai, 8j , z) (l = 1 ~ n-l) on q and pJ (ao, 8j , z) on CJ give

(19)

(20)

The conditions of continuity of shear stress at Pi, p~ (l = 1 ~ n - 1) and PJ similarly give

(21)

(22)

(23)

From eqns (18)~(23), the unknown Ajv is found to be

(24)

where

N 00

Fjv = woivexp(ikshrjo cos 8jo )+ L' L A'",+ vFi.m+vHm (kshr,J exp(im8ji)' (26)
i=1 m=-oo

In eqn (25), Xv and Yvare given in the Appendix.

3. THE AVERAGE FIELD FOR A RANDOM DISTRIBUTION OF CYLINDRICAL
INCLUSIONS

We consider the positions of the cylindrical inclusions to be random. If we denote the
position vector of 0i by rio and the probability density of the random variable
(rIM rZM ... , rNa) by p(r lm r zm . .. , rNa), then due to the indistinguishability of the cylindrical
inclusions, it is symmetric in its arguments and we have (Waterman and Truell, 1961)

(27)
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where the vertical lines in the arguments denote the usual conditional probabilities. A prime
in the first part of eqn (27) means fio is absent, while two primes in the second part of eqn
(27) mean both fio and fjo are absent. For a uniform composite, the positions of a single
cylindrical inclusion are equally probable within a large region S of a cross-section of the
material and, hence, its distribution is uniform with density

= 0 riO¢S. (28)

If now 0;, well within S, is held fixed, the distribution of the cylindrical inclusions around
the cylindrical inclusion will be circularly symmetrical. Thus, p(fjolfiO) is a function of rij
alone, and we can write

I
p(fjolf;o) =:s[l-g(ri)] fjoES

= 0 f jo ¢ S, (29)

where the pair correlation function g(r;) :::; 1 is a decreasing function of rij' The nor­
malization condition gives, in the limit as S --+ 00

1 iR

lim - g(r)rdr = O.
R~oo R2 0 IJ IJ I}

(30)

Due to the impossibility of interpenetration of the cylindrical inclusions and their inde­
pendence when they are infinitely apart, we have

g(r;) = I rij < 2an

=0 rij--+oo.

A function satisfying these conditions is

g(r,j) = 1 rij < 2an

= Vexp( - riJiL) rij ~ 2an

(31)

(32)

where V (0 < V:::; exp [2anIL]) is the coefficient and L > 0 is the correlation length.
We denote the conditional expectations of a statistical quantity !when either 0i or 0i

and OJ together are held fixed as

<!)i = r·,· f!P(f to , ..' ., fNolfio ) dr] .. '. drN

<!)ij = f'·'· f!P(f to,.' .'., fNolf io , fjo) dr] .'.' . drN, (33)

where dri (i = 1 - N) is the volume element at fio' To determine <FiV)i of eqn (26) we take
the conditional expectation to obtain
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<F;,), = woivexp(ikshrio cos 8io ) +no(1- ~) m~~w A~,+v

X L,riu
ES

[I-g(rij)]<Fj,m+v)ijHm(kshrij) exp(im8ji) drj , (34)

where no = N/S = c/na~ is the number of cylindricl:ll inclusions per unit area and c is the
volume concentration of inclusions in the matrix. Equation (34) involves the conditional
expectation with two cylindrical inclusions held fixed. Ifwe take the conditional expectation
of eqn (26) with two cylindrical inclusions held fixed, the resulting equation will contain
the conditional expectation with three cylindrical inclusions held fixed, and so on. We shall
eliminate this hierarchy by assuming Lax's quasicrystalline approximation (Lax, 1952),
which involves the two-inclusion correlation function and implies

(35)

According to the extinction theorem when Sand N become infinitely large (Lax, 1952), the
incident wave is extinguished on entering the composite, so that the corresponding term in
eqn (34) can be dropped. Thus, this equation reduces to

<F,m), = no \-~w A;"+v r [l-g(r;Jl<Fj,m+v)jHv(ksh rji) exp(iv8ji) drj. (36)- JIrio -rial> 2an

Assuming the existence of an average plane wave, we try, for eqn (36), the solution

(37)

where Fm is a constant and Ksh is the wave number of the effective SH wave. Making use of
the Green's theorem and the plane wave expansion

w

exp(iKshxjo ) = exp(iKshXio ) L i- S Js(KshrjJ exp( - is8ji) ,
s= -OC;

we find that the first integral appearing in eqn (36) becomes

r exp(iKshXjo)Hv(ksh';J exp(iv8ji ) dTjJIr}o -fiol > 2an

= 1 i {V 2 [exp(iKshXjo)]Hv(kshrJ;} exp(iv8 jJk 2 _K2 . .
sh sh Irj () - rio I> 2an

(38)

(39)

The second integral in eqn (36) can be also simplified by using the above expansion and
eqn (36) reduces to the system of equations

en

Fm = 2nno L A~,+vFm+v

(40)
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The elimination of Frn from the above equations yields a determinantal equation of infinite
order for Ksh' The effects of multiple scattering on the coherent wave are of great practical
importance for the concentration C = 0.01 - 0.4. At very low concentrations (c < 0.01)
multiple scattering can be neglected and each scatterer can be treated as independent.

Assuming kshao and L to be sufficiently small compared to the wavelength, we obtain
by expanding the Bessel and Hankel functions and retaining the lowest order terms for
hlao = 0.0

(41)

where

Au - Po I
0- -

P

An _ 11-110
±l - 110+11

A;;' = 0, (Iml ~ 2)

2i 2 ( kshL in)/0 ~ - VL 1+ log- - -
n 2 2

(42)

(43)

The effective shear modulus l1:z can be easily obtained from the phase velocity Re(kshlKsh)
of the effective SH wave as follows:

where the average mass density p* is

[ ( h)2J n [ I h( 2/ I h)Jp*=p I-c 1+- +Poc+LP/c -- 2+---=-- .
ao /~ I n ao n ao

4. NUMERICAL RESULTS AND DISCUSSIONS

(44)

(45)

To examine the effect of interface properties on the phase velocity and attenuation of
coherent plane wave through the composite medium, for a given value of kshao, A~ is
computed. Next, the complex coefficient matrix M corresponding to F rn [eqn (40)] is formed.
The complex determinant of the coefficient matrix is computed using standard Gauss
elimination techniques. For a given kshao, the root of the equation det M = 0 is searched in
the complex K sh plane using Muller's method. Good initial guesses are provided by eqn
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Table I. Material properties of SiC and AI

741

Po (kg m-3) /lo (GPa) v

SiC 3181 188.1 0.17 AI 2706 26.7 0.34

(41) at low values of kshao and these can be used systematically to obtain quick convergence
of roots at increasingly higher values of kshao. The considered composite was an SiC-AI
composite. The constituent properties are given in Table 1. Three special cases of interface
material are considered. The elastic properties of Case I, II and III are given by

Case I

(46)

Case II

Case III

(47)

[
r - (ao+h/2)J3 P+Po

PIII(r) = 4(p-po) h + -2- (48)

The material properties of the layers given above are calculated at the midpoint of each
layer assuming variations of Cases I, II and III from the boundary of the inclusion to the
matrix medium.

Figure 2 shows the variation of the phase velocity Re(ksh/Ksh) of the effective SH wave
with the number of layers n for Case II and C = 0.3, h/ao = 0.1, aow/csh = 1.0. Case II refers
to the case of the interface material through which the elastic properties vary linearly from
those of the inclusions to those of the matrix. It is found that the truncation after n = 30
gives practically adequate results for Case II. The effect of the interface layer on Re(ksh/Ksh)
at aOw/csh = 1.0 for c = 0.3 is shown in Fig. 3. The figure shows that the phase velocity
Re(ksh/Ksh) increases with the h/ao ratio, and depends on the constituents and the nature of
the interface layer. The phase velocity for Cases II and III, which was evaluated by taking
n = 30 and 32, agreed to at least three decimal places. Thus, it may be said that the result
for n = 30 is, from a practical view point, quite satisfactory.

In Fig. 4, the phase velocity Re(ksh/K sh) of the effective SH wave is plotted as function
of the frequency aOw/csh for c = 0.3. The dashed curve refers to the case h/ao = 0.0 and the
solid curve refers to h/ao = 0.1. The interface material for Case III is considered. The phase
velocity increases with the frequency, reaches a maximum, and then decreases, and the
interface effect increases the phase velocity. Figure 5 shows the variation of the attenuation
Im(ksh/ksh) of the effective SH wave with the frequency aOw/csh for Case III and c = 0.3,
h/ao = 0.0,0.1. The attenuation decreases with the frequency, reaches a minimum, and then
increases, and the interface effect increases the attenuation. The computations carried out
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0.2

reveal that the truncation after n = 30 gives practically adequate results at any desired finite
frequency for Cases II and III.

Figure 6 shows the variation of the effective shear modulus l1~z of SiC-AI with the
frequency aowjcsh for Case III and C = 0.3, hjao = 0.0, 0.1. The effective shear modulus
increases with the frequency, reaches a maximum, and then decreases, and the interface
effect increases the effective shear modulus. As QOOJ!Csh ---+ 0, the dynamic effective shear
modulus tends to the static solution. Using the Eshelby method, we obtain the effective
shear modulus l1~z for h/ao = 0.0 as Wakashima (1976)

* _ ,(110 _/1)2
/1xz-(I-c)I1+Cl1o-c(l-c)(I) (I)

-c 110 + +c /1

Making use of the law of mixture, we also have

(49)
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* _ J1J1o
J1x- -

. (1- c)J1o + cJ1
(50)

Figure 7 shows the variation of the static effective shear modulus J1~z with the volume
concentration c for h/ao = 0.0. A comparison of the static effective shear modulus is made
in aOw/csh = 0, Eshelby method and law of mixture. The results agree much better with
those obtained from the Eshelby method in the lower concentration. As mentioned earlier,
the Lax's quasicrystalline approximation is valid for the small concentration (c < 0.4) or
to second-order in the concentration c.

In conclusion, the multiple scattering of antiplane shear waves by cylindrical inclusions
with thick nonhomogeneous interface layers was analyzed. The interface effect can increase
phase velocity, attenuation ofcoherent plane wave in a metal matrix composite and effective
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elastic constant, and depends on the frequency and the material properties of the interface
layers. The numerical results at the volume concentration of inclusions c = 0.3 were
obtained for any given finite frequency, and layers with nonhomogeneous elastic properties
of any desired finite thickness.
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APPENDIX

x" Y, in eqn (25) are

G,Q~
X, = --'-"'-'----

E,Q~-U,P~

__ -_G~,~P_C~~Y,=
E,Q~-U,P~

where

The recurrence formula for P~, Q~ are given by

pi
p'+1 = ----cK' +M'

~ Q~ v v

In eqn (A3), K:, L:, M:, N: (l = I - n-I) are

K: = [J,(!C,hal) aa H,(k:~ 1a,) -H,(!C,~ I a,)~ aa J,(k:hal)]
a, ~I+I a,

(AI)

(A2)

(A3)

(A4)

(A5)


